Managing small-scale commercial fisheries for adaptive capacity: insights from dynamic social-ecological drivers of change in Monterey Bay

Globally, small-scale fisheries are influenced by dynamic climate, governance, and market drivers, which present social and ecological challenges and opportunities. It is difficult to manage fisheries adaptively for fluctuating drivers, except to allow participants to shift effort among multiple fisheries. Adapting to changing conditions allows small-scale fishery participants to survive economic and environmental disturbances and benefit from optimal conditions. This study explores the relative influence of large-scale drivers on shifts in effort and outcomes among three closely linked fisheries in Monterey Bay since the Magnuson-Stevens Fisheries Conservation and Management Act of 1976.

Observed trends and climate projections affecting marine ecosystems in the Canadian Arctic.

Past trends and future projections of key atmospheric, oceanic, sea ice, and biogeochemical variables were assessed to increase our understanding of climate change impacts on Canadian Arctic marine ecosystems. Four subbasins are evaluated: Beaufort Sea, Canadian Arctic Archipelago, Baffin Bay/Davis Strait, and Hudson Bay Complex. Limited observations, especially for ecosystem variables, compromise the trend analyses. Future projections are predominately from global models with few contributions from available marine basin scale models. The assessment indicates a significant increase in air temperature, slight increases in precipitation and snow depth, and appreciable changes in atmospheric circulation patterns. Projections suggest an increase in storm strength and size, leading to enhanced storm surges and coastal erosion, a slight increase in wave heights, increases in gustiness, and small changes in mean wind speed. An Arctic-wide decrease in the extent of multiyear ice and a spatial and temporal increase in ice-free waters in summer have been observed and are projected to continue into the future.

New Research: Could Canada benefit from closing the high seas to fishing?

In a thought-provoking paper released in Scientific Reports last week, OceanCanada Director Dr. Rashid Sumaila and his team of researchers uncovered the possible winners and losers in a world where the high seas is closed to fishing. Researchers found that closing the high seas to commercial fishing could be catch-neutral, and might even contribute to a more equitable […]

Understanding protected area resilience: a multi-scale, social-ecological approach.

Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern.

X