Skip to main content

10 posts tagged with "Adaptation"

View All Tags

Canada and Transboundary Fisheries Management in Changing Oceans: Taking Stock, Future Scenarios

Special Issue in Ecology & Society (external link)


Guest Editorial

Canada and transboundary fisheries management in changing oceans: taking stock, future scenarios

U. R. Sumaila, Fisheries Economics Research Unit, Institute for the Oceans and Fisheries, The University of British Columbia; School of Public Policy and Global Affairs, the University of British Columbia, Vancouver, British Columbia, Canada David L. VanderZwaag, Marine & Environmental Law Institute; Dalhousie University

Climate change: impact on marine ecosystems and world fisheries.

I provide a selected survey of the literature on the effects of climate change on the biophysics and ecology of marine ecosystems and the fisheries that depend on them. First, I discuss the effects of warming, ocean acidification and deoxygenation on marine life. Second, I describe how the projected changes in the biophysics of the ocean is likely to affect the economics and management of ocean fisheries. (Full publication)

Opportunities for climate‐risk reduction through effective fisheries management

Risk of impact of marine fishes to fishing and climate change (including ocean acidification) depend on the species’ ecological and biological characteristics, as well as their exposure to over‐exploitation and climate hazards. These human‐induced hazards should be considered concurrently in conservation risk assessment. In this study, we aim to examine the combined contributions of climate change and fishing to the risk of impacts of exploited fishes, and the scope for climate‐risk reduction from fisheries management. We combine fuzzy logic expert system with species distribution modeling to assess the extinction risks of climate and fishing impacts of 825 exploited marine fish species across the global ocean. We compare our calculated risk index with extinction risk of marine species assessed by the International Union for Conservation of Nature (IUCN). Our results show that 60% (499 species) of the assessed species are projected to experience very high risk from both overfishing and climate change under a “business‐as‐usual” scenario (RCP 8.5 with current status of fisheries) by 2050. The risk index is significantly and positively related to level of IUCN extinction risk (ordinal logistic regression, p < 0.0001). Furthermore, the regression model predicts species with very high risk index would have at least one in five (>20%) chance of having high extinction risk in the next few decades (equivalent to the IUCN categories of vulnerable, endangered or critically endangered). Areas with more at‐risk species to climate change are in tropical and subtropical oceans, while those that are at risk to fishing are distributed more broadly, with higher concentration of at‐risk species in North Atlantic and South Pacific Ocean. The number of species with high extinction risk would decrease by 63% under the sustainable fisheries‐low emission scenario relative to the “business‐as‐usual” scenario. This study highlights the substantial opportunities for climate‐risk reduction through effective fisheries management. (Full publication)

Adaptive capacity: from assessment to action in coastal social-ecological systems.

Concerns about the social consequences of conservation have spurred increased attention the monitoring and evaluation of the social impacts of conservation projects. This has resulted in a growing body of research that demonstrates how conservation can produce both positive and negative social, economic, cultural, health, and governance consequences for local communities. Yet, the results of social monitoring efforts are seldom applied to adaptively manage conservation projects. Greater attention is needed to incorporating the results of social impact assessments in long-term conservation management to minimize negative social consequences and maximize social benefits. We bring together insights from social impact assessment, adaptive management, social learning, knowledge coproduction, cross-scale governance, and environmental planning to propose a definition and framework for adaptive social impact management (ASIM). We define ASIM as the cyclical process of monitoring and adaptively managing social impacts over the life-span of an initiative through the 4 stages of profiling, learning, planning, and implementing. We outline 14 steps associated with the 4 stages of the ASIM cycle and provide guidance and potential methods for social-indicator development, predictive assessments of social impacts, monitoring and evaluation, communication of results, and identification and prioritization of management responses. Successful ASIM will be aided by engaging with best practices – including local engagement and collaboration in the process, transparent communication of results to stakeholders, collective deliberation on and choice of interventions, documentation of shared learning at the site level, and the scaling up of insights to inform higher-level conservation policies-to increase accountability, trust, and perceived legitimacy among stakeholders. The ASIM process is broadly applicable to conservation, environmental management, and development initiatives at various scales and in different contexts.

Adaptation strategies to climate change in marine systems

The world’s oceans are highly impacted by climate change and other human pressures, with significant implications for marine ecosystems and the livelihoods that they support. Adaptation for both natural and human systems is increasingly important as a coping strategy due to the rate and scale of ongoing and potential future change. Here, we conduct a review of literature concerning specific case studies of adaptation in marine systems, and discuss associated characteristics and influencing factors, including drivers, strategy, timeline, costs, and limitations. We found ample evidence in the literature that shows that marine species are adapting to climate change through shifting distributions and timing of biological events, while evidence for adaptation through evolutionary processes is limited. For human systems, existing studies focus on frameworks and principles of adaptation planning, but examples of implemented adaptation actions and evaluation of outcomes are scarce. These findings highlight potentially useful strategies given specific social–ecological contexts, as well as key barriers and specific information gaps requiring further research and actions.

Adaptive capacity: from assessment to action in coastal social-ecological systems.

Because of the complexity and speed of environmental, climatic, and socio-political change in coastal marine social-ecological systems, there is significant academic and applied interest in assessing and fostering the adaptive capacity of coastal communities. Adaptive capacity refers to the latent ability of a system to respond proactively and positively to stressors or opportunities. A variety of qualitative, quantitative, and participatory approaches have been developed and applied to understand and assess adaptive capacity, each with different benefits, drawbacks, insights, and implications. Drawing on case studies of coastal communities from around the globe, we describe and compare 11 approaches that are often used to study adaptive capacity of social and ecological systems in the face of social, environmental, and climatic change. We synthesize lessons from a series of case studies to present important considerations to frame research and to choose an assessment approach, key challenges to analyze adaptive capacity in linked social-ecological systems, and good practices to link results to action to foster adaptive capacity. We suggest that more attention be given to integrated social-ecological assessments and that greater effort be placed on evaluation and monitoring of adaptive capacity over time and across scales. Overall, although sustainability science holds a promise of providing solutions to real world problems, we found that too few assessments seem to lead to tangible outcomes or actions to foster adaptive capacity in social-ecological systems.

Solutions to blue carbon emissions: shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh.

In Bangladesh, export-oriented shrimp farming is one of the most important sectors of the national economy. However, shrimp farming in coastal Bangladesh has devastating effects on mangrove forests. Mangroves are the most carbon-rich forests in the tropics, and blue carbon (i.e., carbon in coastal and marine ecosystems) emissions from mangrove deforestation due to shrimp cultivation are accumulating. These anthropogenic carbon emissions are the dominant cause of climate change, which in turn affect shrimp cultivation. Some adaptation strategies including Integrated Multi-Trophic Aquaculture (IMTA), mangrove restoration, and Reducing Emissions from Deforestation and forest Degradation (REDD+) could help to reduce blue carbon emissions. Translocation of shrimp culture from mangroves to open-water IMTA and restoration of habitats could reduce blue carbon emissions, which in turn would increase blue carbon sequestration. Mangrove restoration by the REDD+ program also has the potential to conserve mangroves for resilience to climate change. However, institutional support is needed to implement the proposed adaptation strategies.

Marine reserves can mitigate and promote adaptation to climate change.

Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.

Community-based scenario planning: a process for vulnerability analysis and adaptation planning to social–ecological change in coastal communities

The current and projected impacts of climate change make understanding the environmental and social vulnerability of coastal communities and the planning of adaptations important international goals and national policy initiatives. Yet, coastal communities are concurrently experiencing numerous other social, political, economic, demographic and environmental changes or stressors that also need to be considered and planned for simultaneously to maintain social and environmental sustainability. There are a number of methods and processes that have been used to study vulnerability and identify adaptive response strategies. This paper describes the stages, methods and results of a modified community-based scenario planning process that was used for vulnerability analysis and adaptation planning within the context of multiple interacting stressors in two coastal fishing communities in Thailand. The four stages of community-based scenario planning included: (1) identifying the problem and purpose of scenario planning; (2) exploring the system and types of change; (3) generating possible future scenarios; and (4) proposing and prioritizing adaptations. Results revealed local perspectives on social and environmental change, participant visions for their local community and the environment, and potential actions that will help communities to adapt to the changes that are occurring. Community-based scenario planning proved to have significant potential as an anticipatory action research process for incorporating multiple stressors into vulnerability analysis and adaptation planning. This paper reflects on the process and outcomes to provide insights and suggest changes for future applications of community-based scenario planning that will lead to more effective learning, innovation and action in communities and related social–ecological systems.

Communities and change in the anthropocene: understanding social-ecological vulnerability and planning adaptations to multiple interacting exposures

The majority of vulnerability and adaptation scholarship, policies and programs focus exclusively on climate change or global environmental change. Yet, individuals, communities and sectors experience a broad array of multi-scalar and multi-temporal, social, political, economic and environmental changes to which they are vulnerable and must adapt. While extensive theoretical—and increasingly empirical—work suggests the need to explore multiple exposures, a clear conceptual framework which would facilitate analysis of vulnerability and adaptation to multiple interacting socioeconomic and biophysical changes is lacking. This review and synthesis paper aims to fill this gap through presenting a conceptual framework for integrating multiple exposures into vulnerability analysis and adaptation planning. To support applications of the framework and facilitate assessments and comparative analyses of community vulnerability, we develop a comprehensive typology of drivers and exposures experienced by coastal communities. Our results reveal essential elements of a pragmatic approach for local-scale vulnerability analysis and for planning appropriate adaptations within the context of multiple interacting exposures. We also identify methodologies for characterizing exposures and impacts, exploring interactions and identifying and prioritizing responses. This review focuses on coastal communities; however, we believe the framework, typology and approach will be useful for understanding vulnerability and planning adaptation to multiple exposures in various social-ecological contexts.