Skip to main content

47 posts tagged with "Climate Change"

View All Tags

Climate change: impact on marine ecosystems and world fisheries.

I provide a selected survey of the literature on the effects of climate change on the biophysics and ecology of marine ecosystems and the fisheries that depend on them. First, I discuss the effects of warming, ocean acidification and deoxygenation on marine life. Second, I describe how the projected changes in the biophysics of the ocean is likely to affect the economics and management of ocean fisheries. (Full publication)

Benefits of the Paris Agreement to ocean life, economies, and people

The Paris Agreement aims to mitigate the potential impacts of climate change on ecological and social systems. Using an ensemble of climate-marine ecosystem and economic models, we explore the effects of implementing the Agreement on fish, fishers, and seafood consumers worldwide. We find that implementing the Agreement could protect millions of metric tons in annual worldwide catch of top revenue-generating fish species, as well as billions of dollars annually of fishers’ revenues, seafood workers’ income, and household seafood expenditure. Further, our analysis predicts that 75% of maritime countries would benefit from this protection, and that ~90% of this protected catch would occur within the territorial waters of developing countries. Thus, implementing the Paris Agreement could prove to be crucial for the future of the world’s ocean ecosystems and economies. (Full publication)

Threats and vision for the conservation of Galápagos birds.

Threats that affect the avian diversity on the Galápagos Islands are increasing. We evaluated threats such as climate change and severe weather, human intrusions and disturbance, biological resource use, invasive and other problematic species, genes and diseases, pollution, geological events and loss of genetic diversity in relation with avian species enlisted in both the international and national (Ecuador) IUCN Red List, which can be used as sentinel species of the ecosystem. Here, the status of the threatened species for the next ten years (present time up to 2028), under two scenarios, including the status quo and the avian diversity vision for the species’ conservation, was assessed.

Opportunities for climate‐risk reduction through effective fisheries management

Risk of impact of marine fishes to fishing and climate change (including ocean acidification) depend on the species’ ecological and biological characteristics, as well as their exposure to over‐exploitation and climate hazards. These human‐induced hazards should be considered concurrently in conservation risk assessment. In this study, we aim to examine the combined contributions of climate change and fishing to the risk of impacts of exploited fishes, and the scope for climate‐risk reduction from fisheries management. We combine fuzzy logic expert system with species distribution modeling to assess the extinction risks of climate and fishing impacts of 825 exploited marine fish species across the global ocean. We compare our calculated risk index with extinction risk of marine species assessed by the International Union for Conservation of Nature (IUCN). Our results show that 60% (499 species) of the assessed species are projected to experience very high risk from both overfishing and climate change under a “business‐as‐usual” scenario (RCP 8.5 with current status of fisheries) by 2050. The risk index is significantly and positively related to level of IUCN extinction risk (ordinal logistic regression, p < 0.0001). Furthermore, the regression model predicts species with very high risk index would have at least one in five (>20%) chance of having high extinction risk in the next few decades (equivalent to the IUCN categories of vulnerable, endangered or critically endangered). Areas with more at‐risk species to climate change are in tropical and subtropical oceans, while those that are at risk to fishing are distributed more broadly, with higher concentration of at‐risk species in North Atlantic and South Pacific Ocean. The number of species with high extinction risk would decrease by 63% under the sustainable fisheries‐low emission scenario relative to the “business‐as‐usual” scenario. This study highlights the substantial opportunities for climate‐risk reduction through effective fisheries management. (Full publication)

The future of fishes and fisheries in the changing oceans

This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions.

Climate change impacts on marine biodiversity, fisheries and society in the Arabian Gulf.

Climate change–reflected in significant environmental changes such as warming, sea level rise, shifts in salinity, oxygen and other ocean conditions–is expected to impact marine organisms and associated fisheries. This study provides an assessment of the potential impacts on, and the vulnerability of, marine biodiversity and fisheries catches in the Arabian Gulf under climate change. To this end, using three separate niche modelling approaches under a ‘business-as-usual’ climate change scenario, we projected the future habitat suitability of the Arabian Gulf (also known as the Persian Gulf) for 55 expert-identified priority species, including charismatic and non-fish species. Second, we conducted a vulnerability assessment of national economies to climate change impacts on fisheries. The modelling outputs suggested a high rate of local extinction (up to 35% of initial species richness) by 2090 relative to 2010. Spatially, projected local extinctions are highest in the southwestern part of the Gulf, off the coast of Saudi Arabia, Qatar and the United Arab Emirates (UAE). While the projected patterns provided useful indicators of potential climate change impacts on the region’s diversity, the magnitude of changes in habitat suitability are more uncertain. Fisheries-specific results suggested reduced future catch potential for several countries on the western side of the Gulf, with projections differing only slightly among models. Qatar and the UAE were particularly affected, with more than a 26% drop in future fish catch potential. Integrating changes in catch potential with socio-economic indicators suggested the fisheries of Bahrain and Iran may be most vulnerable to climate change. We discuss limitations of the indicators and the methods used, as well as the implications of our overall findings for conservation and fisheries management policies in the region.

Preparing ocean governance for species on the move.

The ocean is a critical source of nutrition for billions of people, with potential to yield further food, profits, and employment in the future (1). But fisheries face a serious new challenge as climate change drives the ocean to conditions not experienced historically. Local, national, regional, and international fisheries are substantially underprepared for geographic shifts in marine animals driven by climate change over the coming decades. Fish and other animals have already shifted into new territory at a rate averaging 70 km per decade (2), and these shifts are expected to continue or accelerate (3). We show here that many species will likely shift across national and other political boundaries in the coming decades, creating the potential for conflict over newly shared resources.

Adaptive capacity: from assessment to action in coastal social-ecological systems.

Concerns about the social consequences of conservation have spurred increased attention the monitoring and evaluation of the social impacts of conservation projects. This has resulted in a growing body of research that demonstrates how conservation can produce both positive and negative social, economic, cultural, health, and governance consequences for local communities. Yet, the results of social monitoring efforts are seldom applied to adaptively manage conservation projects. Greater attention is needed to incorporating the results of social impact assessments in long-term conservation management to minimize negative social consequences and maximize social benefits. We bring together insights from social impact assessment, adaptive management, social learning, knowledge coproduction, cross-scale governance, and environmental planning to propose a definition and framework for adaptive social impact management (ASIM). We define ASIM as the cyclical process of monitoring and adaptively managing social impacts over the life-span of an initiative through the 4 stages of profiling, learning, planning, and implementing. We outline 14 steps associated with the 4 stages of the ASIM cycle and provide guidance and potential methods for social-indicator development, predictive assessments of social impacts, monitoring and evaluation, communication of results, and identification and prioritization of management responses. Successful ASIM will be aided by engaging with best practices – including local engagement and collaboration in the process, transparent communication of results to stakeholders, collective deliberation on and choice of interventions, documentation of shared learning at the site level, and the scaling up of insights to inform higher-level conservation policies-to increase accountability, trust, and perceived legitimacy among stakeholders. The ASIM process is broadly applicable to conservation, environmental management, and development initiatives at various scales and in different contexts.

Exploring trade-offs in climate change response in the context of Pacific Island fisheries.

Climate change poses significant and increasing risks for Pacific Island communities. Sea-level rise, coastal flooding, extreme and variable storm events, fish stock redistribution, coral bleaching, and declines in ecosystem health and productivity threaten the wellbeing, health, safety, and national sovereignty of Pacific Islanders, and small-scale fishers in particular. Fostering the response capacity of small-scale fishing communities will become increasingly important for the Pacific Islands. Challenging decisions and trade-offs emerge when choosing and mobilizing different responses to climate change. The trade-offs inherent in different responses can occur between various exposures, across spatial and temporal scales, among segments of society, various objectives, and evaluative criteria. Here we introduce a typology of potential trade-offs inherent in responses, elaborated through examples from the Pacific. We argue that failure to adequately engage with trade-offs across human responses to climate change can potentially result in unintended consequences or lead to adverse outcomes for human vulnerability to climate change. Conversely, proactively identifying and addressing these trade-offs in decision-making processes will be critical for planning hazard mitigation and preparing island nations, communities, and individuals to anticipate and adapt to change, not only for Pacific Islands, but for coastal communities around the world.

How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?

Climate and weather have profound effects on economies, the food security and livelihoods of communities throughout the Pacific Island region. These effects are particularly important for small-scale fisheries and occur, for example, through changes in sea surface temperature, primary productivity, ocean currents, rainfall patterns, and through cyclones. This variability has impacts over both short and long time scales. We differentiate climate predictions (the actual state of climate at a particular point in time) from climate projections (the average state of climate over long time scales). The ability to predict environmental conditions over the time scale of months to decades will assist governments and coastal communities to reduce the impacts of climatic variability and take advantage of opportunities. We explore the potential to make reliable climate predictions over time scales of six months to 10 years for use by policy makers, managers and communities. We also describe how climate predictions can be used to make decisions on short time scales that should be of direct benefit to sustainable management of small-scale fisheries, and to disaster risk reduction, in Small-Island Developing States in the Pacific.