Skip to main content

News

Achieving the promise of integration in social-ecological research: a review and prospectus

An integrated understanding of both social and ecological aspects of environmental issues is essential to address pressing sustainability challenges. An integrated social-ecological systems perspective is purported to provide a better understanding of the complex relationships between humans and nature. Despite a threefold increase in the amount of social-ecological research published between 2010 and 2015, it is unclear whether these approaches have been truly integrative. We conducted a systematic literature review to investigate the conceptual, methodological, disciplinary, and functional aspects of social-ecological integration. In general, we found that overall integration is still lacking in social-ecological research. Some social variables deemed important for addressing sustainability challenges are underrepresented in social-ecological studies, e.g., culture, politics, and power. Disciplines such as ecology, urban studies, and geography are better integrated than others, e.g., sociology, biology, and public administration. In addition to ecology and urban studies, biodiversity conservation plays a key brokerage role in integrating other disciplines into social-ecological research. Studies founded on systems theory have the highest rates of integration. Highly integrative studies combine different types of tools, involve stakeholders at appropriate stages, and tend to deliver practical recommendations. Better social-ecological integration must underpin sustainability science. To achieve this potential, future social-ecological research will require greater attention to the following: the interdisciplinary composition of project teams, strategic stakeholder involvement, application of multiple tools, incorporation of both social and ecological variables, consideration of bidirectional relationships between variables, and identification of implications and articulation of clear policy recommendations. (Full Publication)

Opportunities for climate‐risk reduction through effective fisheries management

Risk of impact of marine fishes to fishing and climate change (including ocean acidification) depend on the species’ ecological and biological characteristics, as well as their exposure to over‐exploitation and climate hazards. These human‐induced hazards should be considered concurrently in conservation risk assessment. In this study, we aim to examine the combined contributions of climate change and fishing to the risk of impacts of exploited fishes, and the scope for climate‐risk reduction from fisheries management. We combine fuzzy logic expert system with species distribution modeling to assess the extinction risks of climate and fishing impacts of 825 exploited marine fish species across the global ocean. We compare our calculated risk index with extinction risk of marine species assessed by the International Union for Conservation of Nature (IUCN). Our results show that 60% (499 species) of the assessed species are projected to experience very high risk from both overfishing and climate change under a “business‐as‐usual” scenario (RCP 8.5 with current status of fisheries) by 2050. The risk index is significantly and positively related to level of IUCN extinction risk (ordinal logistic regression, p < 0.0001). Furthermore, the regression model predicts species with very high risk index would have at least one in five (>20%) chance of having high extinction risk in the next few decades (equivalent to the IUCN categories of vulnerable, endangered or critically endangered). Areas with more at‐risk species to climate change are in tropical and subtropical oceans, while those that are at risk to fishing are distributed more broadly, with higher concentration of at‐risk species in North Atlantic and South Pacific Ocean. The number of species with high extinction risk would decrease by 63% under the sustainable fisheries‐low emission scenario relative to the “business‐as‐usual” scenario. This study highlights the substantial opportunities for climate‐risk reduction through effective fisheries management. (Full publication)

Realizing the transformative potential of conservation through the social sciences, arts and humanities

Conservation actions most often occur in peopled seascapes and landscapes. As a result, conservation decisions cannot rely solely on evidence from the natural sciences, but must also be guided by the social sciences, the arts and the humanities. However, we are concerned that too much of the current attention is on research that serves an instrumental purpose, by which we mean that the social sciences are used to justify and promote status quo conservation practices. The reasons for engaging the social sciences, as well as the arts and the humanities, go well beyond making conservation more effective. In this editorial, we briefly reflect on how expanding the types of social science research and the contributions of the arts and the humanities can help to achieve the transformative potential of conservation. (Full publication; View PDF)

OceanCanada Newsletter - Summer 2018

OCEANCANADA NEWS

Nathan Bennett Receives 2018 Early Career Conservationist Award Congratulations to Nathan Bennett, Postdoctoral Fellow in the OceanCanada Partnership, for receiving the Society for Conservation Biology (SCB)’s 2018 Early Career Conservationist Award, for his leadership in advancing the role of social science on conservation policy, and his research which provides critical insights into the role of indigenous people in conservation in Canada, the relationship between small-scale fishers and marine protected areas in Thailand and the Mediterranean Sea, and the effective and equitable governance of marine protected areas globally. The award was conferred at the North American Congress for Conservation Biology (NACCB) in Toronto, July 21-26, 2018.

The dark side of transformation: Latent risks in contemporary sustainability discourse

The notion of transformation is gaining traction in contemporary sustainability debates. New ways of theorising and supporting transformations are emerging and, so the argument goes, opening exciting spaces to (re)imagine and (re)structure radically different futures. Yet, questions remain about how the term is being translated from an academic concept into an assemblage of normative policies and practices, and how this process might shape social, political, and environmental change. Motivated by these questions, we identify five latent risks associated with discourse that frames transformation as apolitical and/or inevitable. We refer to these risks as the dark side of transformation. While we cannot predict the future of radical transformations towards sustainability, we suggest that scientists, policymakers, and practitioners need to consider such change in more inherently plural and political ways.

Governance of the Arctic Ocean beyond national jurisdiction: cooperative currents, restless sea.

(book chapter in Ocean Law Debates: The 50-Year Legacy and Emerging Issues for the Years Ahead) The UN Convention on the Law of the Sea (UNCLOS), signed in 1982 and going into force in 1994, was the product of intensive international debates from the 1950s onward. UNCLOS continues to be the subject of vital debates on new initiatives that seek to clarify or expand the scope of the ocean regime. In Ocean Law Debates: The 50-Year Legacy and Emerging Issues for the Years Ahead, distinguished authors analyze the content of these debates, providing both historical perspectives and keen analyses of present-day issues. Several chapters focus on the contributions to debates over half a century’s time by the Law of the Sea Institute, including the controversies involving maritime delimitation issues, creation of marine fisheries law, and responses to the manifold challenges posed by dramatic advances in science and technology. Complementing these historical perspectives, a section of five chapters offers critical discussion of today’s movement to create a regime to sustain biodiversity in the Area Beyond National Jurisdiction. Finally, the volume offers diverse perspectives on the implementation and judicial interpretation of UNCLOS, international whaling regulation, Arctic regional issues, seabed mining problems, the geopolitics of Marine Protected Area declarations, and the role of the IMO in responding to climate change.

A fuzzy logic expert system for evaluating policy progress towards sustainability goals.

Evaluating progress towards environmental sustainability goals can be difficult due to a lack of measurable benchmarks and insufficient or uncertain data. Marine settings are particularly challenging, as stakeholders and objectives tend to be less well defined and ecosystem components have high natural variability and are difficult to observe directly. Fuzzy logic expert systems are useful analytical frameworks to evaluate such systems, and we develop such a model here to formally evaluate progress towards sustainability targets based on diverse sets of indicators. Evaluation criteria include recent (since policy enactment) and historical (from earliest known state) change, type of indicators (state, benefit, pressure, response), time span and spatial scope, and the suitability of an indicator in reflecting progress toward a specific objective. A key aspect of the framework is that all assumptions are transparent and modifiable to fit different social and ecological contexts. We test the method by evaluating progress towards four Aichi Biodiversity Targets in Canadian oceans, including quantitative progress scores, information gaps, and the sensitivity of results to model and data assumptions. For Canadian marine systems, national protection plans and biodiversity awareness show good progress, but species and ecosystem states overall do not show strong improvement. Well-defined goals are vital for successful policy implementation, as ambiguity allows for conflicting potential indicators, which in natural systems increases uncertainty in progress evaluations. Importantly, our framework can be easily adapted to assess progress towards policy goals with different themes, globally or in specific regions. (Full publication)

Global estimation of areas with suitable environmental conditions for mariculture species

Aquaculture has grown rapidly over the last three decades expanding at an average annual growth rate of 5.8% (2005–2014), down from 8.8% achieved between 1980 and 2010. The sector now produces 44% of total food fish production. Increasing demand and consumption from a growing global population are driving further expansion of both inland and marine aquaculture (i.e., mariculture, including marine species farmed on land). However, the growth of mariculture is dependent on the availability of suitable farming areas for new facilities, particularly for open farming practices that rely on the natural oceanic environmental parameters such as temperature, oxygen, chlorophyll etc. In this study, we estimated the marine areas within the exclusive economic zones of all countries that were suitable for potential open ocean mariculture activities. To this end, we quantify the environmental niche and inferred the global habitat suitability index (HSI) of the 102 most farmed marine species using four species distribution models. The average weighted HSI across the four models suggests that 72,000,000 km2 of ocean are to be environmentally suitable to farm one or more species. About 92% of the predicted area (66,000,000 km2) is environmentally suitable for farming finfish, 43% (31,000,000 km2) for molluscs and 54% (39,000,000 km2) for crustaceans. These predictions do not consider technological feasibility that can limit crustaceans farming in open waters. Suitable mariculture areas along the Atlantic coast of South America and West Africa appear to be most under-utilized for farming. Our results suggest that factors other than environmental considerations such as the lack of socio-economic and technological capacity, as well as aqua feed supply are currently limiting the potential for mariculture expansion in many areas. (Full publication)

Historical baselines of coral cover on tropical reefs as estimated by expert opinion.

Coral reefs are important habitats that represent global marine biodiversity hotspots and provide important benefits to people in many tropical regions. However, coral reefs are becoming increasingly threatened by climate change, overfishing, habitat destruction, and pollution. Historical baselines of coral cover are important to understand how much coral cover has been lost, e.g., to avoid the ‘shifting baseline syndrome’. There are few quantitative observations of coral reef cover prior to the industrial revolution, and therefore baselines of coral reef cover are difficult to estimate. Here, we use expert and ocean-user opinion surveys to estimate baselines of global coral reef cover. The overall mean estimated baseline coral cover was 59% (±19% standard deviation), compared to an average of 58% (±18% standard deviation) estimated by professional scientists. We did not find evidence of the shifting baseline syndrome, whereby respondents who first observed coral reefs more recently report lower estimates of baseline coral cover. These estimates of historical coral reef baseline cover are important for scientists, policy makers, and managers to understand the extent to which coral reefs have become depleted and to set appropriate recovery targets.